
Doctolib Siilo
Security
Whitepaper
A Secure Foundation for Confidential Healthcare
Communication

January 17, 2025

Disclaimer

This Security Whitepaper is intended to provide information about the security design and
implementation of Doctolib Siilo. While we have made every effort to ensure the accuracy
and completeness of this document, we make no warranties or representations, express or
implied, regarding its content.

Updates and Changes

We may update this Security Whitepaper from time to time to reflect changes in our un-
derstanding of security best practices or to address new threats and vulnerabilities. We
encourage readers to review this document periodically for the latest information.

Copyright

© 2025 Doctolib

Contact

Doctolib
54 Quai Charles Pasqua
Levallois-Perret
92300, Ile-de-France
France

Changelog

v2.0 17-01-2025 Revised earlier version to add additional information on key storage,
case keys, and various clarifications.

Doctolib Siilo Security Whitepaper

Table of Contents
1 Introduction . 5

2 Overview of Siilo End-to-End encryption . 6

2.1 Asymmetric encryption . 6
2.1.1 Keys. 6
2.1.2 Key sharing . 6
2.1.3 Contact list. 6
2.1.4 Message exchange . 6
2.1.5 Security Model . 8

2.2 Symmetric encryption . 8

2.3 Nonce Usage and Reuse . 8
2.3.1 Random Nonces . 8
2.3.2 Incrementing Nonces for Attachments. 9

2.4 Cryptographic primitives. 9

2.5 Reason behind using NaCl . 9

3 Keys used, and their purpose . 10

3.1 Box Key (asymmetric) . 10

3.2 Sign Key (asymmetric). 10

3.3 Database Key (symmetric) . 10

3.4 Local File Key (symmetric) . 11

3.5 Attachment Key (symmetric) . 11

3.6 Case Key (symmetric) . 11

3.7 Master key (symmetric). 12

3.8 TLS Certificate. 12

4 Key Storage . 13

4.1 Android. 13
4.1.1 Master Encryption Key. 13
4.1.2 Individual Key Encryption . 13
4.1.3 User Authentication . 14
4.1.4 Benefits . 14

4.2 iOS. 14
4.2.1 User Authentication . 14

5 Key Invalidation . 15

5.1 Invalidation Triggers . 15

3 of 29

Doctolib Siilo Security Whitepaper

5.2 Invalidation Mechanism . 15

5.3 Decryption of Messages with Revoked Keys . 15

6 Perfect Forward Secrecy (PFS). 16

7 Open Source Cryptography Implementations . 17

8 Protocol . 18

8.1 Receiving a message . 18

8.2 Sending a message . 18
8.2.1 Group Messages . 18
8.2.2 Attachments . 19
8.2.3 Patient Case Messages . 19

8.3 Signature . 19

9 Security mechanisms . 20

10 Threat Model . 21

10.1 Intercepted network traffic . 22

10.2 Non-technical attempt to access the application 23

10.3 Unrestricted physical access to the device . 24

10.4 Physical access to Siilo servers . 25

10.5 Social engineering attacks . 26

10.6 An attacker who is a trusted Siilo employee 27

10.7 Compromised root certificate authority. 28

Reference List . 29

4 of 29

Doctolib Siilo Security Whitepaper

1 Introduction
Doctolib Siilo is dedicated to providing a secure and reliable asynchronous communica-
tion platform for healthcare professionals. Recognizing the sensitive nature of healthcare
data, Siilo prioritizes security in all aspects of its platform design and implementation.
Siilo’s security foundation is built upon the following principles:

Proven Cryptography Siilo employs well-established cryptographic techniques based on
open-source components, ensuring transparency and peer-reviewed security. These
cryptographic choices are made in consultation with academic cryptographic experts,
further validating their robustness.

Rigorous Security Testing Siilo maintains a proactive security posture and has con-
ducted penetration and vulnerability testing to assess and address potential weak-
nesses in the platform. These efforts ensure a resilient and secure environment for
sensitive healthcare communications.

Transparency and Trust This whitepaper provides a comprehensive overview of Siilo’s
cryptographic design decisions and threat model. By transparently outlining our
security approach, we aim to foster trust and confidence among healthcare profes-
sionals using our platform.

Balancing Security and Usability Siilo recognizes the importance of balancing robust se-
curity with ease of use. Our platform is designed to provide a seamless and intuitive
user experience while maintaining the highest security standards to protect sensitive
healthcare information.

5 of 29

Doctolib Siilo Security Whitepaper

2 Overview of Siilo End-to-End encryption
2.1 Asymmetric encryption

This section describes how crypto_box is used for asymmet-
ric encryption, for secure communication between contacts.
Doctolib Siilo leverages the NaCl library1 1Peter Schwabe

Daniel J. Bernstein
Tanja Lange. NaCl:
Networking and
Cryptography library. http
s://nacl.cr.yp.to/

as the basis for its
End-to-End encryption (E2EE), the same library used as the
basis of Doctolib’s Tanker. Specifically, for message exchange,
Siilo uses NaCl’s crypto_box function [6] to provide authen-
ticated encryption.

When reading the following section, please refer to Figure 1
for a visual overview.

2.1.1 Keys

On the client, the crypto_box_keypair function randomly generates a private, or se-
cret key (sk) and a corresponding public key (pk):

sk, pk = crypto_box_keypair()

2.1.2 Key sharing

At time of user registration, pk is sent to the Siilo backend, where it is stored as part of the
user’s Contact data. In contrast, sk is securely stored on the user’s device (see the Key
Storage section).

2.1.3 Contact list

The sender has access to a list of contacts. Each of these contacts has an associated
public key, pk.

2.1.4 Message exchange

When sending a message to a contact, the crypto_box function is used: this function
encrypts and authenticates a message m using the sender’s secret key sk, the receiver’s
public key pk, and a (secure random) nonce n. The crypto_box function returns the
resulting ciphertext c:

n = secure_random_bytes(32)
c = crypto_box(m, n, pk, sk)

6 of 29

https://nacl.cr.yp.to/
https://nacl.cr.yp.to/

Doctolib Siilo Security Whitepaper

Ciphertext c, along with nonce n, is sent through the Siilo backend to the recipient. There,
it is decrypted using crypto_box_open. This function verifies and decrypts ciphertext
c using the receiver’s secret key sk, the sender’s public key pk, and the nonce n. The
crypto_box_open function returns the resulting plaintext m:

m = crypto_box_open(c, n, pk, sk)

Key generation

Key sharing

Build contact list

Message exchange

sk_sender, pk_sender =
crypto_box_keypair()

c = crypto_box(m, n,
pk_receiver, sk_sender)

m = crypto_box_open(c, n,
pk_sender, sk_receiver)

Sender wants to send
message m

Receiver now has
decrypted message m

Generate random nonce n

Store public keys with
contacts data

Send pk_sender

Request contact list

Send ciphertext c, and nonce n

Forwards ciphertext c, and nonce n

Return contact list with public
keys (including pk_receiver)

Send pk_receiver

sk_receiver, pk_receiver =
crypto_box_keypair()

Sender Backend Receiver

Figure 1: Message exchange flow

7 of 29

Doctolib Siilo Security Whitepaper

2.1.5 Security Model

As specified in the official crypo_box documentation [6]:

"The crypto_box function is designed to meet the standard notions of privacy and
third-party unforgeability for a public-key authenticated-encryption scheme using
nonces. For formal definitions see [1] Distinct messages between the same sender, re-
ceiver set are required to have distinct nonces. Nonces are long enough that randomly
generated nonces have negligible risk of collision."

Siilo uses random nonces for message exchange. The crypto_box function is not meant
to provide non-repudiation. On the contrary: the crypto_box function guarantees repudi-
ability. A receiver can freely modify a boxed message, and therefore cannot convince third
parties that this particular message came from the sender. The sender and receiver are
nevertheless protected against forgeries by other parties.

2.2 Symmetric encryption

This section describes how crypto_secretbox is used for symmetric encryption in var-
ious other parts of the application (see Keys used, and their purpose). This involves a
single key for both encryption and decryption. Siilo leverages NaCl’s crypto_secretbox
function for symmetric encryption, which encrypts and authenticates a message m using a
256-bit secret key k and a nonce n. The nonce is a unique value used only once per mes-
sage m to ensure that encrypting the same message twice produces different ciphertexts.
The crypto_secretbox function returns the resulting ciphertext c:

k = secure_random_bytes(32)
c = crypto_secretbox(m, n, k)

The crypto_secretbox_open function verifies and decrypts a ciphertext c using a se-
cret key k and a nonce n, returning the resulting plaintext m:

m = crypto_secretbox_open(c, n, k)

2.3 Nonce Usage and Reuse

2.3.1 Random Nonces

In most cryptographic operations (e.g., message exchange, local file encryption and pa-
tient case encryption) Siilo employs random nonces of 32 bytes generated using a secure
random number generator. This ensures that nonce collisions, which can compromise the
confidentiality and integrity of encrypted data, pose a negligible risk.

8 of 29

Doctolib Siilo Security Whitepaper

Each randomly generated nonce is unique for its specific cryptographic session and pur-
pose, safeguarding the encryption process from potential vulnerabilities.

2.3.2 Incrementing Nonces for Attachments

For attachment encryption, Siilo uses a deterministic approach by employing an incre-
menting nonce. This approach starts with 1 and increments sequentially for each attach-
ment chunk. This method allows recipients to easily reconstruct the nonce without the
need for additional metadata or nonce transmission, reducing communication overhead
while maintaining security since a new symmetric key is used for each attachment.

2.4 Cryptographic primitives

The cryptographic primitives used by NaCl are not necessarily the most common and
well-known choices such as AES and RSA. NaCl uses elliptic-curve cryptography, not
RSA; it uses an elliptic curve, Curve25519, that has several advanced security features;
it uses Salsa20, not AES; it uses Poly1305, not HMAC; and for an elliptic-curve signature
system it uses EdDSA, not ECDSA. There are various good reasons behind these choices,
including performance and more robustness against cryptographic attacks.

crypto_box is curve25519xsalsa20poly1305, a combination of Curve25519,
Salsa20, and Poly1305.

crypto_secretbox is crypto_secretbox_xsalsa20poly1305, a combination of
Salsa20 and Poly1305.

crypto_sign is crypto_sign_edwards25519sha512batch, a combination of
Curve25519 in Edwards form and SHA-512.

For more information on NaCl, the underlying cryptographic primitives, and the rationale
for their use, please refer to the website [5] and the paper [7].

2.5 Reason behind using NaCl

Siilo has chosen to utilize NaCl as its core cryptographic foundation for several compelling
reasons, primarily centered around its unique combination of simplicity and robust secu-
rity. NaCl is designed with a focus on ease of use and minimizing the potential for devel-
oper error. By providing high-level, well-defined cryptographic functions, NaCl abstracts
away many of the complexities of lower-level cryptographic primitives. This significantly
reduces the risk of introducing vulnerabilities due to incorrect implementation or misuse
of cryptographic algorithms. Despite its simplicity, NaCl does not compromise on cryp-
tographic strength. It is built upon carefully selected, modern cryptographic primitives
that have undergone extensive scrutiny and are widely considered secure. This ensures
that Siilo’s communication platform benefits from strong encryption and authentication
mechanisms.

9 of 29

Doctolib Siilo Security Whitepaper

3 Keys used, and their purpose
3.1 Box Key (asymmetric)

The Box Key is an NaCl keypair generated during the registration process using
crypto_box_keypair, and used for encrypting messages, as described in the previous
section:

• The public Box Key (pk) is stored on the server and accessible to authenticated
clients. When a user reinstalls the application and generates a new Box Key, a con-
tact update event is sent through the Siilo protocol to inform their contacts about the
updated public key.

• The private Box Key (sk) is stored securely on the user’s device (see Key Storage)

Lifetime: The Box Key remains constant throughout the installation’s lifetime. However, it
can be revoked by the server under specific circumstances:

• New Installation: When a user installs the application again, a new Box Key is gener-
ated and provided to the server, effectively revoking the previous key.

• Account Deletion: An authorized Siilo operator can manually revoke the Box Key
when a user’s account is deleted.

• Security Concerns: The server can revoke a Box Key if there are security concerns or
suspected compromise.

3.2 Sign Key (asymmetric)

The Sign Key is an NaCl signing keypair, also generated during the registration process.
It is used for client authentication during API calls, ensuring that requests are coming
from legitimate Siilo users. The Sign Key is generated using the crypto_sign_keypair
function:

sk_sign, pk_sign = crypto_sign_keypair()

The lifetime and revocation of the Sign Key are identical to the Box Key, described above.

3.3 Database Key (symmetric)

The Database Key is a 256-bit key used by SQLCipher, which leverages AES-256 to secure
the underlying SQLite database files. This key encrypts the database on the user’s device,
which contains contacts, messages, and associated metadata. Generated during registra-
tion, this key persists for the lifetime of the installation and cannot be changed without
reinstalling the application.

10 of 29

Doctolib Siilo Security Whitepaper

3.4 Local File Key (symmetric)

For encrypting locally stored files, a 256-bit symmetric key called the Local File Key is
used. Encryption is performed using NaCl’s crypto_secretbox, with a secure randomly
generated nonce prepended to the encrypted byte array. This key is generated during
installation and remains unchanged unless the application is reinstalled.

3.5 Attachment Key (symmetric)

The Attachment Key is a 256-bit symmetric key that is generated by the client each time
an attachment (such as an image, video, or audio file) is uploaded to the server. These
keys are single-use. Attachments are divided into 2 MB chunks before encryption. This
facilitates efficient handling and transmission of large files. The nonce used for encrypting
each attachment chunk is derived from the index of the chunk (starting with 1 for the first
chunk, then incrementing.) This deterministic approach allows the recipient to easily de-
rive the nonce without requiring it to be transmitted separately, reducing communication
overhead. The NaCl crypto_secretbox implementation is used for symmetric encryp-
tion, and the key is shared with each intended recipient using asymmetric encryption
(crypto_box), using their public Box Key, pk.

3.6 Case Key (symmetric)

A Case Key is a 256-bit symmetric key that is generated by the client and used to encrypt
the various fields (blocks of information) of a so-called Patient Case, a dedicated group
conversation used to discuss a single patient. For each Case, a new Case Key is gener-
ated.

• Generation: The Case Key (case_key) is randomly generated by the client using
secure_random_bytes(32), a cryptographically strong random number, ensuring
its uniqueness and unpredictability.

• Encryption: The Case Key is used to encrypt the Patient Case information using
crypto_secretbox (See Symmetric encryption.) This ensures the confidentiality
and integrity of the case data.

• Sharing with Participants: To enable all participants to access the encrypted case
information, the Case Key is securely shared with them through this process:
– The Case Key is individually encrypted for each participant using their public

Box Key (contact_pk), the sender’s private Box Key (sk) and a nonce n using
crypto_box. This ensures that only intended recipients can decrypt and access
the Case Key.

– The encrypted Case Key is then transmitted to each participant.

case_key = secure_random_bytes(32)
for_each(contact in participant_list)

c = crypto_box(case_key, n, contact_pk, sk)

11 of 29

Doctolib Siilo Security Whitepaper

In addition to the case information, messages in this case are also encrypted using this
same case key. Unlike for normal group chats, this allows for adding members to the con-
versation at a later date, while ensuring they can decrypt and access the historic content
of the conversation, allowing frictionless collaboration.

3.7 Master key (symmetric)

In order to securely store the various keys described above on the device, a master key is
used. More information about this can be found in the Master Encryption Key section.

3.8 TLS Certificate

Finally, the TLS Certificate is issued by Sectigo CA. It utilizes an RSA 2048-bit key and
SHA-256 for secure communications.

12 of 29

Doctolib Siilo Security Whitepaper

4 Key Storage
4.1 Android

Siilo employs a multi-layered approach to securely store and protect cryptographic keys
on Android devices. This approach leverages the Android Keystore System and encryption
to ensure the confidentiality and integrity of sensitive key material.

4.1.1 Master Encryption Key

Siilo utilizes the Android Keystore System to generate and store a master encryption key.
This key is used to encrypt the various individual encryption keys used within the applica-
tion. The Android Keystore provides a hardware-backed, isolated environment for storing
this master key, making it significantly more difficult for unauthorized access or extrac-
tion.

• Master Key Generation: A master key is generated using AES (Advanced Encryption
Standard) with the following parameters:
– Key Algorithm: KeyProperties.KEY_ALGORITHM_AES
– Block Mode: KeyProperties.BLOCK_MODE_CBC
– Encryption Padding: KeyProperties.ENCRYPTION_PADDING_PKCS7

• Security Features: The Android Keystore provides several security features to pro-
tect the master key, including:
– Hardware-backed Storage: On devices with dedicated secure hardware, the

master key is stored in this hardware for enhanced protection.
– Non-Exportability: The master key’s raw material remains non-exportable, pre-

venting extraction from the device even with root access.
– Isolated Environment: The Keystore provides an isolated environment, protect-

ing the master key from unauthorized access by other applications.

4.1.2 Individual Key Encryption

The individual encryption keys used within the Siilo app (e.g., Box Key, Sign Key, Database
Key), as well as the PIN code are encrypted using the master key stored in the Android
Keystore.

• Encryption Method: The Android Keystore is used to encrypt the individual keys
using AES in CBC mode with PKCS7 padding.

• Initialization Vector (IV): A secure random IV is generated for each encryption oper-
ation.

• Storage: The encrypted keys, along with their corresponding IVs, are stored in
SharedPreferences in Base64 encoded format.

13 of 29

Doctolib Siilo Security Whitepaper

4.1.3 User Authentication

The user’s PIN is also securely stored within the Android Keystore. Users can authenticate
to the Siilo app using one of the following methods:

• Biometric Authentication: Convenient and secure authentication using fingerprint or
other biometric modalities supported by the device.

• PIN Entry: Users can enter their 5-digit PIN to authenticate.

4.1.4 Benefits

This multi-layered approach provides robust security for cryptographic keys on Android
devices:

• Master Key Protection The Android Keystore safeguards the master key, minimizing
the risk of unauthorized access.

• Individual Key Encryption: Encrypting individual keys with the master key adds an
extra layer of protection, even if SharedPreferences data is compromised.

• Hardware-backed Security: Leveraging the Android Keystore’s hardware-backed
features enhances key security on compatible devices.

• Non-Exportability: The non-exportable nature of the master key and the encryption
of individual keys prevent key material from being extracted from the device.

Refer to Android Keystore System [2] for more information.

4.2 iOS

On iOS, all keys are securely stored in the iOS Keychain, initialized with the kSecAttrAc-
cessibleAfterFirstUnlockThisDeviceOnly parameter enabled.

The data in the keychain item cannot be accessed after a restart until the device has been
unlocked once by the user. After the first unlock, the data remains accessible until the
next restart. This is recommended for items that need to be accessed by background ap-
plications. Items with this attribute do not migrate to a new device. Thus, after restoring
from an Apple backup on a different device, these items will not be present and messages
can not decrypted. However using the Siilo backup/restore process will guarantee the
messages access on the new device. For more information, please refer to the Apple Doc-
umentation [3].

4.2.1 User Authentication

Similarly to Android, users can authenticate to the Siilo app using one of the following
methods:

• Biometric Authentication: Convenient and secure authentication using fingerprint or
other biometric modalities supported by the device.

• PIN Entry: Users can enter their 5-digit PIN to authenticate.

14 of 29

Doctolib Siilo Security Whitepaper

5 Key Invalidation
Both the Box Key and Sign Key can be invalidated or revoked by the server under specific
circumstances. This mechanism ensures that outdated keys are no longer used.

5.1 Invalidation Triggers

Key invalidation can be triggered by the following events:

• New Installation: When a user reinstalls the Siilo application on their device, a new
Box Key and Sign Key are generated. The server automatically invalidates the previ-
ous keys associated with the user’s account.

• Manual Revocation: Authorized Siilo operators have the ability to manually revoke a
user’s Box Key and Sign Key. This might be necessary in cases of suspected account
compromise, or at the user’s request.

5.2 Invalidation Mechanism

Key invalidation is implemented through a contact update message sent by the server.
This message is transmitted through the same secure communication channel used for
other Siilo protocol messages. This contact update message informs other users about
the invalidation of the keys, prompting them to update their records and use the new
keys for future communication with the affected user. The process can be initiated by a
dedicated invalidation API call, accessible only to authorized operations personnel.

5.3 Decryption of Messages with Revoked Keys

Siilo employs a fallback mechanism to decrypt messages sent using older keys. The back-
end stores the old public keys for each contact. For each incoming message, the decryp-
tion process attempts to use the sender’s previously active keys, one after another, until
decryption succeeds. This approach ensures that messages that were sent prior to the
key update but before the recipient had a chance to receive them become permanently
inaccessible due to key updates.

15 of 29

Doctolib Siilo Security Whitepaper

6 Perfect Forward Secrecy (PFS)
Perfect Forward Secrecy [11] (PFS) is a cryptographic feature that ensures the confi-
dentiality of past communications even if a long-term private key is compromised. PFS
achieves this by generating ephemeral session keys for each session, which are discarded
after the session ends.

Currently, Siilo does not implement PFS for its end-to-end encryption protocols. This de-
cision is influenced by the need to balance performance, user experience, and technical
complexity. While the absence of PFS does not compromise the security of ongoing com-
munications, we acknowledge that adding PFS would enhance the resilience of Siilo’s
platform against certain advanced threat models.

As we continue to evolve Siilo’s security infrastructure, incorporating PFS is a potential
focus area for future development. This reflects our ongoing commitment to providing
state-of-the-art security for healthcare professionals.

16 of 29

Doctolib Siilo Security Whitepaper

7 Open Source Cryptography Implementations
The cryptographic framework of the system is built on several open-source projects that
ensure robust security across various platforms.

• For database encryption, the SQLCipher Project [12] is utilized, providing transparent
AES-256 encryption of SQLite databases.

• Message encryption and other cryptographic functions rely on the NaCl project [5].
This library, known for its high-speed cryptographic operations, is foundational to the
system’s security architecture. Additional resources and documentation for NaCl are
available on the NaCl project page and the corresponding whitepaper [7].

For platform-specific implementations:

• Android: The cryptographic functionalities are extended through projects like Lib-
sodium JNI [9], an Android wrapper for NaCl, and the Android-specific version of
SQLCipher [12].

• iOS: On iOS, cryptographic operations are implemented using Swift Sodium [10], a
Swift wrapper for NaCl, and SQLCipher.swift [4] with SQLCipher for database encryp-
tion.

• Backend: on the server side TweetNaCl [8], a minimalistic version of the NaCl library
in Java is used.

17 of 29

Doctolib Siilo Security Whitepaper

8 Protocol
The system’s wire format and domain objects are gen-
erated using Google Protocol Buffers, as defined in
Envelope.proto. At the highest level, messages are en-
capsulated within an "envelope." This envelope, protected by
TLS 1.2, contains metadata that allows the backend to route
the message for "store and forward" operations. The backend
holds the message until it is acknowledged (or "Acked") by
the recipient, at which point the message is deleted from the
server2. Each message is uniquely identified by a combina- 2If you use Siilo Web, the

message is not deleted
immediately, as it needs
to be available for the web
client.

tion of message-id and timestamp. However, it is important
to note that currently, an authorized client has the ability to
rewrite the message history.

8.1 Receiving a message

To receive a message, the client sends an HTTP POST request to

/api/{api version}/messages/receive

The request headers include x-siilo-uid and x-siilo-sig (see Signature) alongside
Protos.Ack in the body. Upon receiving this Ack, the server deletes the acknowledged
messages from its storage. The server’s response includes an EnvelopeList, which
contains a list of envelopes in the same format as those used by the send API.

8.2 Sending a message

To send a message, the client sends an HTTP POST request to

/api/{api version}/messages/send

The request headers include x-siilo-uid and x-siilo-sig in the headers alongside
Protos.Envelope in the body. A successful operation results in a 204 No Content
response. An envelope includes the sender’s user ID and, if applicable, the associated
group ID. This allows for sending text messages, typing events (i.e., indicating a user is
typing), and read receipts (indicating a user viewed a message).

8.2.1 Group Messages

For group messages, the same envelope is used with different payloads, each encrypted
with the public key of the intended recipient. This is similar to messages encryption to

18 of 29

Doctolib Siilo Security Whitepaper

a single recipient (see Overview of Siilo End-to-End encryption) but encrypting them for
each recipient separately using crypto_box. This ensures that only members who are
part of the group have access to the messages in the conversation, and nobody can be
added to the group at a later date and have access to the message history of the conver-
sation. Although encrypting the message individually for each group participant increases
the overall data size, this overhead is negligible given the typical message length of ap-
proximately 200 bytes.

8.2.2 Attachments

As discussed in more detail in the Attachment Key (symmetric) section, attachments, un-
like regular text messages, are not encrypted asymmetrically, but symmetrically instead,
using crypto_secretbox. The symmetric key used to encrypt an attachment is then
shared to the recipient asymmetrically with crypto_box.

8.2.3 Patient Case Messages

As discussed in more detail in the Case Key (symmetric) section, patient case messages
are encrypted with a symmetric key using crypto_secretbox, which is shared with all
patient case participants through asymmetric encryption using crypto_box.

8.3 Signature

All API calls are protected by a digital signature included in the HTTP headers as
x-siilo-uid and x-siilo-sig. The x-siilo-uid must match the user_id encoded
within the x-siilo-sig. A request is signed as follows:

1. A SignatureHeader Protobuf object is constructed and converted to bytes using
toByteArray(), forming the message bm. The SignatureHeader contains these
fields:
• timestamp
• user_id
• build_number
• uri_path
• client_type

2. The Sign Key is used to sign bm using NaCl’s crypto_sign:

sm = crypto_sign(bm, sk_sign)

3. The result sm is concatenated with bm (the original SignatureHeader byte array),
then Base64 encoded and included in the x-siilo-sig header:

x-siilo-sig = Base64(sm, bm)

19 of 29

Doctolib Siilo Security Whitepaper

9 Security mechanisms
The system employs several robust security measures to ensure the protection and confi-
dentiality of user data:

• End-to-End Encryption: All communications are encrypted end-to-end using NaCl
cryptographic primitives, ensuring that only the intended recipient can decrypt the
messages (see Overview of Siilo End-to-End encryption)

• Application Access Control: A pin code or biometric authentication is required to
access the application, providing an additional security measure to protect user data
(see User Authentication for iOS and User Authentication for Android).

• Local Storage Encryption: Data stored locally on the device is encrypted using SQL-
Cipher (which implements AES-256) or NaCl, securing the database and other sensi-
tive information.

• The OS-level application sandbox: which isolates Siilo’s app data and code execu-
tion from other apps.

• Client-Side Certificate Pinning: The server’s public key is pinned on the client side,
adding an additional layer of security to prevent man-in-the-middle attacks.

• TLS 1.2 Encryption: Communication between the client and server is secured using
TLS 1.2, with ciphers that support forward secrecy. The supported ciphers include:
– ECDHE-ECDSA-AES128-GCM-SHA256
– ECDHE-RSA-AES128-GCM-SHA256
– ECDHE-ECDSA-AES128-SHA256
– ECDHE-RSA-AES128-SHA256
– ECDHE-ECDSA-AES256-GCM-SHA384
– ECDHE-RSA-AES256-GCM-SHA384
– ECDHE-ECDSA-AES256-SHA384
– ECDHE-RSA-AES256-SHA384
– ECDHE-RSA-AES256-SHA

20 of 29

Doctolib Siilo Security Whitepaper

10 Threat Model
The platform is designed with stringent security goals to ensure the confidentiality, in-
tegrity, and authenticity of user communications and data. These goals include:

• Confidentiality and integrity in transit: Ensuring that messages remain confidential
and unaltered while being transmitted between the sender and receiver.

• Device-level confidentiality: Protecting the confidentiality of messages stored on
the device, particularly in scenarios where the device might be lost or stolen.

• Server-Side confidentiality: Safeguarding the confidentiality of messages temporar-
ily stored on the server as they await delivery.

• Minimized data retention: Avoiding the storage of personal information such as
phone numbers and emails for non-Siilo users, thereby reducing unnecessary data
exposure.

• User identity verification: Verifying the identities of users on the network to prevent
unauthorized access and impersonation.

To thoroughly assess potential security threats, this document will model threats using a
structured template:

1. Description: This section provides a brief outline of the attack or attacker in question,
detailing the nature and intent of the potential threat.

2. Prerequisites: Here, the conditions required for the attack to be implemented are
outlined. This may include specific technical conditions or access to certain informa-
tion or resources.

3. Prevention: This section discusses the measures in place to prevent the attack or to
reduce its likelihood. It covers both technical and procedural safeguards designed to
counteract the threat.

4. Difficulty: This assesses how practical it is to carry out the attack, categorized as:
• Easy: The attack requires no specialized knowledge, skills, or equipment.
• Moderate: The attack demands a moderate level of knowledge or information,

such as a strong computer science background or non-public information about
the target.

• Difficult: The attack necessitates specialized knowledge or detailed information
about the target, such as expertise in Informatics Security or personal insights
gained through prolonged social contact with the target.

• Very Difficult: The attack requires highly specialized knowledge or information
approaching the level of a nation-state actor or an individual within the top 3% of
the security field.

5. Severity: This section evaluates the potential impact of a successful attack, inde-
pendent of its difficulty. It considers the consequences and damage that could result
from the breach.

6. Conclusions: Finally, an assessment of what a successful attack could achieve is
provided, along with an explanation of the design decisions made to mitigate this
specific threat vector, where applicable.

21 of 29

Doctolib Siilo Security Whitepaper

10.1 Intercepted network traffic

Description An attacker intercepts network traffic between a participant and the server.
For instance, if a user connects their device to a compromised Wi-Fi network con-
trolled by the attacker, the attacker can capture and analyze the traffic before it is
forwarded to its intended destination.

Prerequisites For this attack, the attacker must first compromise a device in the network
path, such as a Wi-Fi router. Additionally, they must bypass the transport layer en-
cryption to access the unencrypted data.

Prevention The platform implements several safeguards to mitigate this threat:
• Certificate Pinning: Clients use certificate pinning to guard against many man-

in-the-middle attacks by ensuring that only trusted certificates are accepted.
• Cryptographic Signing: Each request includes a cryptographic signature with a

timestamp, valid for only 5 minutes. This limits the window for replay attacks.
• End-to-End Encryption: In addition to TLS, end-to-end encryption protects user

content, ensuring that even if transport layer security fails, the data remains
confidential.

Difficulty Difficult. Successfully executing this attack requires specialized knowledge and
capabilities to both intercept network traffic and break transport layer encryption
(TLS 1.2).

Severity Low. Although the attacker might gain access to certain types of information, the
overall impact is limited.

Conclusions Even if the attacker compromises network traffic and bypasses TLS 1.2,
their achievements are constrained:
• Message Replay: The attacker could potentially replay messages within the

server’s signature validity window, triggering duplicate system notifications like
typing indicators. However, they cannot spoof content, read notifications, or
access end-user messages.

• Metadata Exposure: If the transport layer is compromised, metadata such as
the Siilo user ID of participants and message length may be exposed.

• Encrypted Content: The attacker can intercept encrypted content transmitted
during their network access. Despite the absence of forward secrecy in the mes-
sage encryption, they would only gain access to messages that were intercepted.
Breaking the user’s private key would only reveal the specific messages captured
during this period.

22 of 29

Doctolib Siilo Security Whitepaper

10.2 Non-technical attempt to access the application

Description An attacker gains brief physical access to your device through a social engi-
neering attack. For example, someone may ask to use your device to make a call due
to their battery being dead. Given the time constraint, the attacker cannot perform
more invasive methods, such as connecting to the device with a debugger.

Prerequisites The attacker must have physical access to the device and attempt to ac-
cess your data through non-technical means, such as guessing the pin code at the
application level.

Prevention Several layers of security are in place to mitigate this risk:
• OS-Level Pin Code: The device’s operating system requires a pin code for ac-

cess.
• Application-Level Protection: The app is secured with a 5-digit numeric pin

code that must be entered if the app has not been accessed within the past 10
minutes. Additionally, incorrect pin code attempts trigger progressively longer
timeouts.

Difficulty Difficult. The attacker must have physical access and is limited to non-
technical methods of bypassing security, such as guessing the pin code. Advanced
technical attacks are not feasible due to the time constraint.

Severity High. The attack could potentially allow the attacker to access sensitive applica-
tion data if they can guess the pin code within the limited time window. This threat is
significant especially if the attacker is targeting the individual specifically.

Conclusions The design allows access to the application if the pin code has been en-
tered within the last 10 minutes. This is a trade-off between usability and security,
catering to scenarios where quick access is needed. In cases where the device is left
unattended, the pin code is likely to expire before an attacker attempts access. For
enhanced security, users can configure their OS-level pin code to activate when the
device enters sleep mode, providing an additional layer of protection against unau-
thorized access.

23 of 29

Doctolib Siilo Security Whitepaper

10.3 Unrestricted physical access to the device

Description The device is left unattended in a scenario where the attacker has sufficient
time to access it using specialized tools, such as a debugger. The attacker is not
constrained by the need to quickly return the device undetected and can perform
in-depth tasks, such as "rooting" the device or physically accessing its internal com-
ponents.

Prerequisites The attacker must have physical access to the device and is free to use
advanced methods to bypass security measures, including rooting the device or ma-
nipulating its hardware.

Prevention
• OS-Level Pin Lock: The primary defense is the OS-level pin lock, which is robust

against unauthorized access. On iOS devices with Touch ID, the biometric secu-
rity adds an additional layer of protection, making it highly resistant to attempts
to bypass the OS-level passcode. On Android devices, the application’s data di-
rectory is encrypted by the OS-level security code. However, some devices are
vulnerable to bootloader attacks that may bypass this encryption.

Difficulty Moderate. While specialized tools and techniques are required to access a
device in this scenario, it is possible with sufficient time and resources. The attacker
may leverage vulnerabilities or physical access methods, making this attack feasible
but not trivial.

Severity High. If the attacker successfully gains access to the device, they could poten-
tially bypass the application-level pin protection and access sensitive data. This level
of access poses a significant risk, especially if the device’s OS-level security is not
robust.

Conclusions The 5-digit pin code provides a limited addressing space, which is consid-
ered insufficient as a sole protective measure. It serves primarily as a form of ob-
fuscation rather than robust security. The best defense against this threat is strong
OS-level protection. On iOS, devices with Touch ID configured offer a high level of re-
sistance to unauthorized access. For Android devices, while the OS-level encryption
provides substantial protection, users should be aware of potential vulnerabilities
related to bootloader attacks. Proper configuration and use of available security fea-
tures are crucial in minimizing the risk of successful attacks in this scenario.

24 of 29

Doctolib Siilo Security Whitepaper

10.4 Physical access to Siilo servers

Description An attacker gains physical access to the Siilo servers, either due to the at-
tacker being a trusted host provider or successfully breaching the hosting facility.
This situation could involve the attacker compromising the server infrastructure di-
rectly.

Prerequisites The attacker needs physical access to the Siilo servers, which could be
achieved through either direct infiltration of the data center or by exploiting vulnera-
bilities in the host provider’s security.

Prevention
• Trusted hosting provider: Siilo’s servers are hosted on Amazon Web Services

(AWS), which has security measures in place to protect its customers. AWS holds
ISO 27001 certification, ensuring adherence to high security and data protection
standards.

• Security measures: Regular audits, monitoring, and compliance checks are part
of the hosting provider’s procedures to prevent unauthorized physical access and
ensure overall security.

Difficulty Difficult. Gaining physical access to the servers requires significant effort and
resources. The attacker would need to bypass both physical security measures and
potentially sophisticated datacenter protections.

Severity : High.
• Messaging server: If the messaging server is compromised, user metadata,

such as hashed telephone numbers and communication patterns (e.g., contact
graphs), could be exposed. However, the actual message content would remain
secure due to end-to-end encryption.

• Elastic search server: Compromise of the elastic search server would expose
publicly available information from the application, but without the applica-
tion’s rate limiting features. This data would be limited to what users can access
through the application itself.

• Database server: A breach of the database server would have a broader impact,
potentially exposing the entire database, which includes all user data. The at-
tacker could access a comprehensive dump of the database, not just intercepted
data.

Conclusions If an attacker successfully compromises the server infrastructure, the im-
pact varies based on the server type. While (historic) message content remains se-
cure due to end-to-end encryption, user metadata and publicly available information
could be at risk. In the case of database access, the scope of the breach extends to
all data stored in the database. To mitigate these risks, it is essential that users verify
their key fingerprints to ensure message confidentiality and protect against potential
impersonation by an attacker who might insert their own key.

25 of 29

Doctolib Siilo Security Whitepaper

10.5 Social engineering attacks

Description This threat encompasses attacks involving social engineering and imperson-
ation within the Siilo system. It includes:
• Impersonating a Real Siilo user: An attacker pretends to be an existing Siilo

user.
• Impersonating a Non-Siilo user: An attacker poses as someone who is not a

registered Siilo user.
• Impersonating a Siilo employee: An attacker pretends to be a Siilo employee to

gain access or information.
Prerequisites

• Application installation: The attacker must be able to install the Siilo applica-
tion.

• SMS falsification: If targeting a specific user, the attacker may need to falsify
SMS origin to deceive the target.

Prevention
• Unverified state indicator: New users are marked as "unverified" with clear UI

indicators. Users must fill in profile details, which are verified by Siilo employees.
Verified users receive a verification mark.

• Key fingerprint verification: Users can verify each other’s identity through a
face-to-face meeting to compare the hash or fingerprint of their public keys. This
helps ensure the cryptographic identity matches the real person.

Difficulty Easy. Social engineering relies on exploiting human psychology rather than
technical vulnerabilities. Impersonating someone within the system is straightfor-
ward if the attacker can convince the target.

Severity Low to medium.
Conclusions

• Social engineering risks: Social engineering attacks exploit human factors and
can be prevalent where there is incentive. The challenge of identity verification
without a central authority persists. Siilo is exploring solutions like IRMACard to
improve this aspect.

• Employee impersonation: Phishing tactics used to impersonate Siilo employ-
ees are akin to scams in other sectors. The primary risk involves revealing the
user’s pin code. Combined with physical theft of the device, this could lead to
unauthorized access. However, the practical application of this attack is limited
as it requires physical presence and substantial effort. Users should be aware
that legitimate Siilo employees will not request their pin code and should resist
disclosing it.

In summary, while social engineering attacks are a common risk, Siilo’s verification mech-
anisms and user vigilance are key to mitigating these threats.

26 of 29

Doctolib Siilo Security Whitepaper

10.6 An attacker who is a trusted Siilo employee

Description This threat involves a Siilo employee with elevated privileges who might
misuse their access to the system to gain unauthorized access to end-user data.
Such personnel currently include three individuals with full operational access.

Prerequisites
• Employee status: The attacker must be a Siilo employee with elevated privi-

leges, granted full operational access.
• Access level: This access level pertains to a limited number of employees who

are entrusted with critical system capabilities.
Prevention

• Access limitation: The number of employees with such high-level access is mini-
mized to reduce potential abuse.

• Peer review: Code changes are subject to peer review by at least one other indi-
vidual, making a code-based attack more challenging and requiring collusion.

• Audit trails: Access credentials to the production environment are assigned
individually, ensuring that all actions are traceable.

• Experience requirement: Employees with elevated privileges must have been
with the company for a minimum of four years, ensuring a level of trust and stabil-
ity.

Difficulty Moderate.
Severity Medium.
Conclusions

• Data access: Employees with this level of access can view all user metadata,
including contact lists and phone numbers. However, they do not have direct
access to message content, such as text messages or images, without breaking
the end-to-end encryption.

• Security comparison: From a security perspective, such employees are akin
to attackers who have compromised network traffic and broken transport-level
encryption. While they have access to full SSL certification, this does not grant
them additional advantages over an attacker who has compromised transport
security.

• Confidentiality assurance: Message confidentiality is maintained as long as
users have mutually verified their key fingerprints. Without this verification, an
attacker could potentially substitute their own key to impersonate users.

In summary, while the risk from internal abuse by privileged employees is mitigated by
strict access controls and audit mechanisms, the integrity of message content remains
protected by end-to-end encryption. Continuous vigilance and stringent access manage-
ment practices are essential to safeguard against such internal threats.

27 of 29

Doctolib Siilo Security Whitepaper

10.7 Compromised root certificate authority

Description This threat involves an attacker gaining control over a globally trusted Root
Certificate Authority (CA), enabling them to issue fraudulent TLS certificates that are
accepted as valid due to the Public Key Infrastructure (PKI) trust model.

Prerequisites
• Root CA compromise: The attacker must have compromised a Root CA that is

widely trusted by internet users. This allows them to issue TLS certificates that
would be recognized as valid by third parties.

• Certificate issuance: With control over the Root CA, the attacker can forge cer-
tificates to impersonate legitimate organizations or service providers.

Prevention
• Certificate pinning: To mitigate this risk, we use TLS certificate pinning. This

technique ensures that only certificates from our specified certificate provider
are accepted, rejecting any certificates issued by unauthorized or compromised
CAs.

Difficulty Very difficult.
Severity Medium to high.
Conclusions

• Sophistication required: The complexity of successfully compromising a glob-
ally trusted Root CA makes it less likely for such an attack to specifically target
our service. The effort required for this attack is significant, thus reducing the
probability of occurrence.

• Potential targets: The most critical certificates that an attacker might forge
would be those of major entities like Apple/Google (which could alter applica-
tion builds), Amazon (which could impersonate Amazon APIs used for server
management), and the Siilo certificate itself.

• Mitigation impact: While certificate pinning offers strong protection against
forged certificates, the overall threat level remains medium to high due to the
potential impact on trust and data security if such an attack were successful.

In summary, the risk from a compromised Root CA is mitigated by using certificate pin-
ning, which safeguards against unauthorized certificates. However, the severity of the
potential impact underscores the importance of continued vigilance and robust certificate
management practices.

28 of 29

Doctolib Siilo Security Whitepaper

Reference List
[1] Jee Hea An. Authenticated encryption in the public-key set- ting: secu-

rity notions and analyses. https://eprint.iacr.org/2001/079.
[2] Google Android. Android Keystore system. https://developer.an

droid.com/privacy-and-security/keystore.
[3] Apple. Apple Security Documentation. https://developer.apple

.com/documentation/security/ksecattraccessibleafterf
irstunlockthisdeviceonly.

[4] Stephen Celis. SQLite.swift. https://github.com/stephencelis
/SQLite.swift.

[5] Peter Schwabe Daniel J. Bernstein Tanja Lange. NaCl: Networking and
Cryptography library. https://nacl.cr.yp.to/.

[6] Peter Schwabe Daniel J. Bernstein Tanja Lange. Public-key authenti-
cated encryption: crypto_box. https://nacl.cr.yp.to/box.htm
l.

[7] Peter Schwabe Daniel J. Bernstein Tanja Lange. The security impact of
a new cryptographic library. http://cr.yp.to/highspeed/cooln
acl-20120725.pdf.

[8] Peter Schwabe Daniel J. Bernstein Tanja Lange. TweetNaCl. https:
//tweetnacl.cr.yp.to/.

[9] Open source. libsodium-jni. https://github.com/joshjdevl/li
bsodium-jni.

[10] Open source. Swift-Sodium. https://github.com/jedisct1/swi
ft-sodium.

[11] Wikipedia. Forward Secrecy. https://en.wikipedia.org/wiki
/Forward_secrecy.

[12] Zetetic. SQLCipher. https://www.zetetic.net/sqlcipher/.

29 of 29

https://eprint.iacr.org/2001/079
https://developer.android.com/privacy-and-security/keystore
https://developer.android.com/privacy-and-security/keystore
https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
https://developer.apple.com/documentation/security/ksecattraccessibleafterfirstunlockthisdeviceonly
https://github.com/stephencelis/SQLite.swift
https://github.com/stephencelis/SQLite.swift
https://nacl.cr.yp.to/
https://nacl.cr.yp.to/box.html
https://nacl.cr.yp.to/box.html
http://cr.yp.to/highspeed/coolnacl-20120725.pdf
http://cr.yp.to/highspeed/coolnacl-20120725.pdf
https://tweetnacl.cr.yp.to/
https://tweetnacl.cr.yp.to/
https://github.com/joshjdevl/libsodium-jni
https://github.com/joshjdevl/libsodium-jni
https://github.com/jedisct1/swift-sodium
https://github.com/jedisct1/swift-sodium
https://en.wikipedia.org/wiki/Forward_secrecy
https://en.wikipedia.org/wiki/Forward_secrecy
https://www.zetetic.net/sqlcipher/

	Introduction
	Overview of Siilo End-to-End encryption
	Asymmetric encryption
	Keys
	Key sharing
	Contact list
	Message exchange
	Security Model

	Symmetric encryption
	Nonce Usage and Reuse
	Random Nonces
	Incrementing Nonces for Attachments

	Cryptographic primitives
	Reason behind using NaCl

	Keys used, and their purpose
	Box Key (asymmetric)
	Sign Key (asymmetric)
	Database Key (symmetric)
	Local File Key (symmetric)
	Attachment Key (symmetric)
	Case Key (symmetric)
	Master key (symmetric)
	TLS Certificate

	Key Storage
	Android
	Master Encryption Key
	Individual Key Encryption
	User Authentication
	Benefits

	iOS
	User Authentication

	Key Invalidation
	Invalidation Triggers
	Invalidation Mechanism
	Decryption of Messages with Revoked Keys

	Perfect Forward Secrecy (PFS)
	Open Source Cryptography Implementations
	Protocol
	Receiving a message
	Sending a message
	Group Messages
	Attachments
	Patient Case Messages

	Signature

	Security mechanisms
	Threat Model
	Intercepted network traffic
	Non-technical attempt to access the application
	Unrestricted physical access to the device
	Physical access to Siilo servers
	Social engineering attacks
	An attacker who is a trusted Siilo employee
	Compromised root certificate authority

	Reference List

